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SUMMARY

Plant phenotypes are the result of both genetic and environmental forces that act to modulate trait expres-

sion. Over the last few years, numerous approaches in functional genomics and systems biology have led to

a greater understanding of plant phenotypic variation and plant responses to the environment. These

approaches, and the questions that they can address, have been loosely termed evolutionary and ecological

functional genomics (EEFG), and have been providing key insights on how plants adapt and evolve. In par-

ticular, by bringing these studies from the laboratory to the field, EEFG studies allow us to gain greater

knowledge of how plants function in their natural contexts.

Keywords: quantitative trait loci mapping, genome-wide association study mapping, ecological transcrip-

tome, lab–field gap, environment.

INTRODUCTION

A key goal of biology has been to understand the genetic

basis of complex traits, including the genetic architecture

of quantitative phenotypes that dominate variation in

plant populations (Tanksley, 1993; Mitchell-Olds et al.,

2007), and the role of the interaction between environ-

ment and genetics in trait expression (Des Marais et al.,

2013). Plants have varied life histories and can grow in a

wide range of environments, and whether plants are able

to adapt to perturbations in their environment depends

on the extent to which plants can render appropriate

phenotypic responses. Over the last few years, a growing

area of research – broadly termed as evolutionary and

ecological functional genomics (EEFG) – has developed

with a focus on studying the genetic architecture of

quantitative traits (Feder and Mitchell-Olds, 2003), under-

standing how genes and genomes function in natural

environments (Ungerer et al., 2008), and how genetic fea-

tures affect ecological success and evolutionary fitness

(Mitchell-Olds et al., 2007). In general, EEFG involves the

examination of evolutionary routes of genetic change

that can be fully understood only by considering

environmental influences on the phenotype throughout

organismal development.

Questions that are being addressed in this new area are

varied. How much are traits affected by genotype-by-envir-

onment (G 9 E) interactions, i.e. what is their level of

canalization? What are the roles of regulation at the epige-

netic, transcriptional and post-transcriptional levels on

plastic responses in the wild? How do organisms integrate

multiple, dynamic and constantly fluctuating environmen-

tal signals in their life cycles? How are signaling networks

fine-tuned to generate adaptive plastic responses within

and among species? Why are genetic differences main-

tained in populations? When and how can genetic architec-

ture constrain phenotypic plasticity?

As the drive to understand how organisms adapt in the

wild has advanced over the last 10–15 years, researchers

have explored numerous avenues of investigation. Finding

answers to EEFG-type questions requires combinations of

approaches in controlled laboratory and natural environ-

ments. With recent advances in genomics, quantitative and

population genetics, and molecular and systems biology it

has been possible to shift from a reductionist to a systems-
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level approach, and to bring functional genomics to non-

model organisms as well. Here we focus on three major

approaches for unearthing the genetic/genomic and envi-

ronmental basis for plant phenotypic variation, which are

increasingly being applied for large-scale analysis in the

field. These approaches are genetic mapping, epigenomic

analysis and high-throughput gene expression (transcrip-

tome) studies; all three have provided new insights into the

nature of plant traits in the laboratory and in the field. These

have enriched how G 9 E interactions, normally not detect-

able in a particular genotype if not for a shift in the condi-

tions of their environment, are currently being addressed.

FINDING ASSOCIATIONS BETWEEN GENOTYPE AND

PHENOTYPE: LINKAGE MAPPING

The first key approach in evolutionary and ecological func-

tional genomics consists of mapping quantitative trait loci

(QTL; Figure 1), and finding the underlying genes or

genetic variants associated with complex traits. Before the

boom in next-generation sequencing approaches, QTL

mapping studies were often limited in the number of mark-

ers along the chromosomes that could be used. Popular

markers were microsatellite length polymorphisms (short,

tandem, or simple sequence repeats: STRs/SSRs), single-

nucleotide polymorphisms (SNPs) or derivatives thereof.

For example, SNPs could form the basis of the presence/

absence of polymorphisms in restriction sites (e.g. restric-

tion fragment length polymorphisms). SNP markers can

now be generated with much higher throughput through

microarray analysis, whole-genome sequencing or geno-

typing-by-sequencing methods, such as RAD-seq (Baird

et al., 2008), Pool-seq (Futschik and Schl€otterer, 2010) and

QTL-seq (Takagi et al., 2013). Traditional QTL mapping

efforts have worked with artificial populations developed

specifically for this purpose, including bi-parental mapping

populations such as advanced backcrosses, heterogeneous

inbred families, isogenic/near-isogenic lines, and recombi-

nant inbred lines (Crow, 2007; Kooke et al., 2012). More

recently, advanced mapping populations such as multi-par-

ent advanced generation inter-cross (MAGIC) populations

(Kover et al., 2009) have been developed to increase the

number of QTLs that segregate in a cross. The large num-

ber of parental accessions used to create populations pro-

vides higher allelic and phenotypic diversity.

Mapping populations have been generated for a wide

array of plant species, and have remained important

resources for uncovering the genetic architecture of traits

of interest. Examples of these species are the model plant

Arabidopsis thaliana (Ehrenreich et al., 2007), crops such

as maize (Buckler et al., 2009), rice (Zhou et al., 2016) and

soybeans (Diers et al., 2018), and ecologically and evolu-

tionarily interesting species such as Mimulus spp. (Monna-

han and Kelly, 2017) and Helianthus spp. (Anderson et al.,

2011). Mapping studies on these species have

demonstrated that many quantitative traits appear to be

controlled by some QTLs of large effect, and have facili-

tated the isolation of specific genes important for these

traits. One classic example has been the fine-mapping of

the QTL responsible for the branched architecture in maize

associated with its domestication from teosinte, which was

initially mapped as a domestication QTL and subsequently

fine-mapped as the tb1 gene (Doebley et al., 1995). In

A. thaliana, an early flowering time QTL was shown to be

a large-effect allele of the CRY2 gene (El-Din El-Assal et al.,

2001). These and myriad other studies have advanced our

understanding of the genetic basis for complex traits in

plants, and have been a major advance in dissecting key

plant traits (Mauricio, 2001).

Recently, there has been a renewed interest in using

bulked segregant analysis in QTL mapping. In concert with

high-density genotyping via whole-genome sequencing. A

method termed as extreme QTL (X-QTL) mapping was

developed in yeast that promised a higher resolution and

rapid mapping (Ehrenreich et al., 2010). This has been

used in mapping seed size (Guo et al., 2015), germination

features (Yuan et al., 2016a) salt tolerance (Guo et al.,

2015; Yuan et al., 2016b; Figure 2) in A. thaliana. X-QTL

mapping continues to hold some promise, although it is

likely to be more important for species with high recombi-

nation rates.

Conventional QTL mapping is still used extensively,

especially for fine-mapping efforts, but is now comple-

mented by genome-wide association studies (GWAS).

Unlike conventional QTL mapping, which relies on a pedi-

greed population, GWAS use linkage disequilibrium to link

specific SNPs with traits of interest in populations of natu-

ral accessions or varieties (Figure 2). This allows for the

exploration of more genetic diversity in GWAS than in con-

ventional QTL mapping, where the genetic diversity is lim-

ited to the selected parents. Loci identified through GWAS

in such populations may therefore have broader relevance

for a species as a whole, under the assumption that com-

mon genetic variation explains common phenotypic varia-

tion (Nordborg and Weigel, 2008).

Pioneered in human studies in the early 2000s (Ozaki

et al., 2002), GWAS are currently used to identify the geno-

mic basis of phenotypes in both model and non-model

plant species. A seminal plant GWAS by Atwell et al.

(2010) showcased the method’s power for mapping natural

genetic variants for more than 100 traits in A. thaliana. To

date, GWAS have also identified the genetic basis of

numerous agronomic traits, speeding up breeding pro-

grams of crops such as maize (Jiao et al., 2012; Zila et al.,

2013; Wallace et al., 2014; Hu et al., 2017; Xu et al., 2018)

and rice (Huang et al., 2010, 2011; McCouch et al., 2016;

Wang et al., 2017a; Wang et al., 2018a), as well as crops

with less well-developed molecular resources such as

wheat (Liu et al., 2017; Kristensen et al., 2018), soybean
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(Fang et al., 2017a), barley (Sharma et al., 2018), cotton

(Fang et al., 2017b; Du et al., 2018a), cassava (Kayondo

et al., 2018), foxtail millet (Jia et al., 2013), spinach (Ma

et al., 2016) and cauliflower (Thorwarth et al., 2017). GWAS

are a particularly relevant tool for perennial species such

as apple (Urrestarazu et al., 2017), citrus (Minamikawa

et al., 2017), eucalyptus (Resende et al., 2017) and poplar

(Liu et al., 2018a). It is difficult to make QTL mapping popu-

lations for such tree species due to their high genetic

loads, high levels of heterozygosity and long generation

cycles coupled with large sizes.

At present, GWAS are collectively being mobilized to

provide population-based validation for the genotype–phe-
notype associations of previously identified genes via can-

didate gene approaches (Todesco et al., 2010), and for

newly discovered, relevant genes (Nemri et al., 2010; Sla-

vov et al., 2014; Diepenbrock et al., 2017; Hazzouri et al.,

2018; Rajarammohan et al., 2018). Most importantly,

population re-sequencing coupled with QTL or GWAS on

traits of interest is being actively adopted in studies on trait

plasticity and adaptation in natural environments (Brachi

et al., 2010; Dell’Acqua et al., 2014; van Heerwaarden et al.,

2015; Lasky et al., 2015; Anderson et al., 2016; Kerdaffrec

et al., 2016; Meyer et al., 2016; Brunazzi et al., 2018; Du

et al., 2018b). GWAS approaches are currently being devel-

oped to assess the genetic basis for plant interactions with

other members of the species community as well. GWAS

that considered both sides of plant–microbe and plant–in-
sect interactions showed the importance of genetic varia-

tion in plant and plant colonizer in determining the

outcome of an interaction (Nallu et al., 2018; Wang et al.,

2018b).

A fusion of linkage analysis (as epitomized by QTL map-

ping) and GWAS has been undertaken with the develop-

ment of nested association mapping (NAM; Yu et al., 2008;

McMullen et al., 2009; Figure 2). NAM allows for rapid

Figure 1. Schematic representation of conventional

quantitative trait loci (QTL) mapping steps and anal-

ysis to identify genotype–phenotype associations.
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high-resolution mapping of genes underlying quantitative

traits, and employs specially developed NAM populations

to great success. In maize, where this technique was devel-

oped, it was first used to map genes associated with flow-

ering time (Buckler et al., 2009; Figure 2). Since then it has

been extended for use in rice (Fragoso et al., 2017), wheat

(Bajgain et al., 2016) and barley (Maurer et al., 2015).

These and other mapping advances continue to pro-

vide greater speed and resolution in mapping genes

associated with complex traits, both in the laboratory

and the field. Depending on the scope of the question,

time constraints and required mapping resolution, either

QTL or GWAS may be appropriate; a review by Korte

and Farlow (2013) provides an account of the strengths

Figure 2. An illustrated comparison of selected linkage mapping approaches for finding associations between genotype, phenotype and environment.

Stylized and re-drawn workflow methods for (a) extreme quantitative trait loci (X-QTL) mapping (Yuan et al., 2016a,b), (b) genome-wide association study

(GWAS; Atwell et al., 2010) and (c) nested association mapping (NAM; Buckler et al., 2009), which exemplify strengths and weaknesses of these specific linkage

mapping approaches.
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and weaknesses of GWAS, with some comparisons to

QTL mapping.

Corollary to these initial genetic mapping strategies that

identify regions of the genome associated with the trait of

interest, fine-mapping and successive confirmatory experi-

ments are still often necessary to pinpoint specific trait-

causal gene/s. In some cases, trait associations are located

in regions of the genome that contain the genes previously

shown to be causal for the trait, i.e. (Yang et al., 2014; Hu

et al., 2017; Ogawa et al., 2018). However, for uncovering

mechanisms involving novel genes, additional experi-

ments including fine-mapping and necessity-sufficiency

experiments still provide the needed confirmation and are

still the norm for most studies to date.

PHENOTYPIC VARIATION AND THE EPIGENOME

A second major approach in the study of plant phenotypic

variation was to focus on characterizing the plant epigen-

ome and its role in the regulation of phenotypes. Epigenet-

ics form a particular focus of attention as these underlie

phenotypic variation and also could influence the process

of adaptation to the environment (Eichten et al., 2014). Epi-

genetic modifications encompass a wide range of bio-

chemical changes to the chromatin state that stem from

DNA methylation, alterations in the type or placement of

histones (phosphorylation, acetylation, ubiquitylation and

sumoylation), or even the replacement of auxiliary RNAs

or proteins (Dowen et al., 2012; Figure 3). Correspondingly,

a host of techniques have been developed to assess differ-

ent aspects of the epigenome. Common high-throughput

methods to catalog DNA methylation marks and nucleo-

some positioning are bisulfite sequencing (Shiraishi and

Hayatsu, 2004; Lister et al., 2008; Lewsey et al., 2016) and

MNase-seq (Zaret et al., 2005; Liu et al., 2015a; Zhang

et al., 2015), respectively. On the other hand, DNase-seq

(Zhang et al., 2012a,b; Qiu et al., 2016), Chip-seq (Kauf-

mann et al., 2010) and ATAC-seq (Buenrostro et al., 2015;

Lu et al., 2017; Maher et al., 2018; Sijacic et al., 2018) help

to determine chromatin accessibility and to demarcate pos-

sible regulatory regions of the genome.

Although these techniques often need to be used in

tandem with other techniques to ascertain the signals

obtained, they have revolutionized the way we look at

the genetic basis of phenotypes. The first whole-genome,

single-nucleotide-resolution, bisulfite sequencing study

for any organism was on the A. thaliana epigenome (Lis-

ter et al., 2008). This study analyzed various mutants,

and studied the distribution, context and periodicity of

genome methylation including at rDNA genes and telom-

eres, which were inaccessible to previous methods.

Although single-base-pair resolution epigenomes have

been obtained for plant species as diverse as melon

(Martin et al., 2009), rice (Li et al., 2012), tomato (Zhong

et al., 2013), wheat (Jiao et al., 2018), spruce (Ausin et al.,

2016) and apple (Daccord et al., 2017), most work on dis-

secting epigenomic mechanisms has been done in the

model plant A. thaliana (Liu, 2013; Seymour and Becker,

2017; Springer and Schmitz, 2017).

One exceptional study has been the comprehensive

analysis of DNA methylomes of 34 diverse angiosperm

species at single-base resolution (Niederhuth et al., 2016).

Their comparative analysis uncovered widespread natural

variation of DNA methylation within angiosperms, and

found that methylation patterns broadly reflect the evolu-

tionary and life histories of plant species. Systematic com-

parisons of published epigenomic data have provided

further insights into the regulation (Zhang et al., 2018a),

and evolution (Choi and Purugganan, 2018; Wang et al.,

2018c) of epigenetic mechanisms. Furthermore, studies on

the epigenomic landscape have revealed the functional

portions of the genome in detail. In both plants and ani-

mals, nucleosomes are generally enriched in GC-rich por-

tions of the genome, and different nucleosome densities

can be observed across different tissues (Zhang et al.,

2015). Different cell types also have different chromatin

accessibility patterns (Sijacic et al., 2018). In maize, open

chromatin has been shown to be about less than 1% of the

genome, although despite being a small portion of the

genome these regions explain an immense amount (~40%)

of heritable phenotypic variation in different complex traits

(Rodgers-Melnick et al., 2016). Pushing on from the point

of merely understanding patterns of epigenetic changes,

there have been considerable studies that show how these

changes play important roles in plant developmental pro-

cesses, and responses to the environment (Ko et al., 2010;

Dowen et al., 2012; Daccord et al., 2017; Friedrich et al.,

2018; Kumar et al., 2018; Zhang et al., 2018b).

In terms of inheritance, a study of epimutations in the F1
generation and the corresponding parents showed that,

although less stable than genetic mutations, epimutation

clusters are strongly associated with regions where the

production of siRNA differs between parents (Chodavarapu

et al., 2012). Genomic regions that harbor these epimuta-

tions, explaining as much as 90% of the variation observed

in some mapping populations, have been shown to control

complex traits such as flowering time and root length (in

Arabidopsis; Cortijo et al., 2014). Heritable epimutations

have also been shown to be involved in local adaptation in

several plant species (L€amke and B€aurle, 2017; Zheng

et al., 2017; Groot et al., 2018; Herrera et al., 2018; Wein-

hold, 2018), and are especially relevant for studies in the

EEFG framework.

Lastly, work has been started in modeling epigenetic tra-

jectories for understanding of the evolutionary forces driv-

ing epigenome evolution at different time-scales and

conditions (Gallusci et al., 2017; Huang and Ecker, 2018).

Modeling efforts are either statistics-based or processed-

based, and have been shown to furnish a mechanistic
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understanding of how the pieces fit together to form a

well-matched whole and quantify their impact on plant

performances (Gallusci et al., 2017). Some modeling work

on classic epigenetic-mediated examples includes descrip-

tion of the Polycomb-based switching mechanism during

the vernalization process involving Arabidopsis FLC

(Richards et al., 2012a), and using DNA methylation as the

predictor of variance in plant height (Hu et al., 2015).

THE TRANSCRIPTOME SHAPES TRAIT VARIATION

The third approach in the study of plant EEFG focuses on

gene expression patterns in plants with the aim of under-

standing how such patterns contribute to trait plasticity

and adaptation. By examining the mRNA transcripts and

small RNAs, it is possible to find out which loci are impor-

tant in a particular environment, developmental stage and

even a specific cell type.

Just as high-throughput next-generation DNA sequenc-

ing has allowed researchers to readily scale up plant geno-

typing, microarray and RNA sequencing (RNA-seq)

technologies have scaled up our capacity of measuring

transcript levels at the genome scale. Early microarray work

showed that it was possible to gain a systems-level under-

standing of transcript heritability and transcriptome regula-

tion (Schadt et al., 2003; Keurentjes et al., 2007; West et al.,

2007). Three RNA-seq papers (Lister et al., 2008; Mortazavi

et al., 2008; Nagalakshmi et al., 2008) on Arabidopsis, yeast

and mice, respectively, mark the start of this tool’s use for

functional genomic studies. Contemporarily, RNA-seq is

used at ever-larger scales for functional characterization of

developmental, environmental response and economically

important phenotypes (Becker et al., 2017; Feng et al., 2017;

Giacomello et al., 2017; Leydon et al., 2017; Liu et al.,

2018b), and is often used to validate epigenomic measure-

ments (Wang et al., 2017b). There are numerous studies

that employ whole-genome gene expression analysis not

just for model plant species and crops, but also for lesser-

known plant species including Japanese lawn grass (Xie

et al., 2015), Cunninghamia lanceolata (Cao et al., 2016),

mangrove fern (Zhang et al., 2016), wild oil-tea camelia

(Chen et al., 2017), curry tree (Meena et al., 2017) and Bank-

sia (He et al., 2018). At the same time, computational tools

like eRD-GWAS (expression read depth GWAS mapping)

used to uncover expression variation (Lin et al., 2017) can

now be harnessed much more efficiently to connect geno-

mic variation with phenotypes.

The importance of examining how genes are expressed

in the field and their role in adaptation is currently given

more relevance. Works from numerous groups, including

Shimizu et al. (2011), Nagano et al. (2012), Richards et al.

(2012a,b), Kobayashi et al. (2013), D’Agui et al. (2016),

Holmes et al. (2016), Kudoh (2016) and M€ahler et al. (2017),

highlight some key findings in this area and will be dis-

cussed more extensively in the succeeding sections. We

specifically chose these studies because they feature how

RNA-seq has assumed an important role for characterizing

the temporal, spatial, regulatory and evolutionary gene

expression landscapes.

Figure 3. An illustration of several epigenetic fac-

tors known to affect phenotypic variation.
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The scope of studies utilizing linkage, epigenetics and

transcriptome analyses in the purview of the EEFG frame-

work will be discussed in greater detail below.

THE EEFG RESEARCH PROGRAM: EXPLOITING

VARIATION

Technological advances in molecular biology have stimu-

lated the rapid generation of large-scale sequencing data

in model (Mir, 2009; Faino and Thomma, 2014) and non-

model organisms (Ekblom and Galindo, 2011; Nawy, 2011;

Unamba et al., 2015; da Fonseca et al., 2016) at a reason-

able cost. Furthermore, there is an expanding realization

that the genome or transcriptome of a single individual

(i.e. a reference individual) is inadequate to represent the

diversity within and among closely related species (Bore-

vitz and Nordborg, 2003; Gasch et al., 2016). Conclusions

based on work done solely on a chosen genotype in one

study may not be readily extrapolated to the rest of the

species (Gan et al., 2011; Ristova et al., 2018).

Fortunately, it is now possible to capture the diversity of

accessions, varieties, ecotypes, related species and plant

interactors in genetic studies, thereby making EEFG com-

parative approaches and association studies to identify

genetic components of traits and adaptations possible

(Juenger et al., 2006; Lai et al., 2008; Fournier-Level et al.,

2011; Brachi et al., 2015; Gloss et al., 2017; M€ahler et al.,

2017; Exposito-Alonso et al., 2018; Nallu et al., 2018; Wang

et al., 2018a,b,c; von Wettberg et al., 2018). Work on the

model plant Arabidopsis (and other Brassicaceae species)

in natural habitats, for example, has provided valuable

insights into the role of natural selection on disease-resis-

tance genes, and on the metabolic fluxes in auxin and glu-

cosinolate metabolism (Tian et al., 2003; Prasad et al.,

2012; Olson-Manning et al., 2013, 2015; Horton et al., 2014;

MacQueen and Bergelson, 2016). Studies such as these

could have direct applications in the management of dis-

ease-resistance alleles in crop varieties.

In the EEFG framework, more studies are being under-

taken that involve measurements of genome-wide

responses to the environment and their evolution (Liu

et al., 2015a,b; von Wettberg et al., 2018). Studies have

been able to leverage ‘omics’ technologies in the field to

study the basis of local adaptation (Knight et al., 2006;

Gould et al., 2018) and contribute to the understanding of

changing environmental conditions and climate change

(Fournier-Level et al., 2011; Hancock et al., 2011; Nagano

et al., 2012; Plessis et al., 2015; D’Agui et al., 2016). Experi-

ments that manipulate agents of selection in native field

environments using pedigreed populations or GWAS pan-

els also offer unique opportunities for detecting the genetic

and environmental mechanisms that generate local adap-

tation (Wadgymar et al., 2017). Combinatorial, multi-loca-

tion experimental set-ups and reciprocal transplant

experiments can unlock fitness-associated loci relative to

climate, macro- and microbiota, and local adaptation (Wil-

czek et al., 2009; Fournier-Level et al., 2011; Agrawal et al.,

2012; Prasad et al., 2012; Z€ust et al., 2012; Wagner et al.,

2014; Brachi et al., 2015).

A key area that is gradually being integrated into the

EEFG framework is phenomics, the practice of high-

throughput and high-dimensional phenotyping (Pauli

et al., 2016). This includes strategies that take into account

in-depth environmental characterization and accurate anal-

ysis of the environmental variables that can affect plant

phenotypes. Phenomics is one more tool to bridge the lab–
field gap, which allows accurate high-throughput trait mea-

surements in less controlled environments. The adoption

in GWAS to map 13 traditional and two newly defined

traits (Yang et al., 2014) and QTL mapping for yield compo-

nents (Tanger et al., 2017) in rice is a showcase of the

advantage of phenomics for EEFG-type studies. Pushing

forward from traditional traits, field imaging platforms cap-

able of measurement of canopy and continuous leaf devel-

opment have also been shown to dissect more specific

traits affecting water use (Vadez et al., 2015). Scaling this

up even further, unmanned aerial vehicles are currently

being developed and streamlined for even higher time and

quantity throughput (Shi et al., 2016). A comprehensive

review on how field phenotyping should be implemented

was also published recently by Araus et al. (2018).

Importantly, EEFG has ushered direct, real-world appli-

cations of ‘omic’ technologies to crops in evolutionary eco-

logical settings. Maize common garden experiments to

elucidate genomic, transcriptomic and phenotypic varia-

tion uncovered the structure of adaptive diversity in a var-

ied landscape (Liu et al., 2015a,b; Kost et al., 2017). Some

studies have managed to identify specific genomic inver-

sions that harbor loci regulating flowering time and other

phenotypes (Fransz et al., 2016; Lee et al., 2017; Romero

Navarro et al., 2017). In tomato, researchers were able to

decipher the footprints of domestication using gene

expression and population genetic analyses (Sauvage

et al., 2017).

However, while EEFG enables us to answer ecological

and evolutionary questions on a scale and precision that

was unrealistic only a few years ago, we should point out

that the methods that enable systems-level analyses still

need more development. Furthermore, if specific genes or

mechanisms are uncovered by large-scale analysis, func-

tional tests of necessity or sufficiency are still fundamental.

FROM LAB TO THE FIELD: PLANT GENOMICS AND

SYSTEMS BIOLOGY IN NATURA

Switching the domain of study from model species

towards studies of natural populations comes hand-in-

hand with recognizing the significance of shifting from lab-

oratory-based experiments towards (von Wettberg et al.,

2018) ecological characterization in common gardens,
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fields and natural habitats. Now, more and more studies

are able to distinguish meaningful genetic variation

because appropriate environments are being considered

(Tian et al., 2003; Franks et al., 2016; Xu et al., 2016;

McKown et al., 2018).

Historically, most measurements of the phenotypic con-

sequences of genetic variation have been performed in the

confines of the laboratory, thereby reflecting a narrow and

sometimes even artificial range of responses to environ-

mental stimuli (Annunziata et al., 2017). When these stim-

uli are provided by other members of the biota, the

behavior of these species may not reflect behavior in field

conditions either, potentially leading to unrealistic out-

comes; for example, pathogens may only successfully

infect leaves when humidity is at sufficient levels (Xin

et al., 2016). Undoubtedly, there is abundant evidence for

the conclusion that traits observed in laboratory conditions

cannot always be used to predict the behavior of those

traits in natural conditions, revealing a ‘lab–field gap’ (Wei-

nig et al., 2002; Malmberg et al., 2005; Casati et al., 2011;

Guevara et al., 2012; Mishra et al., 2012; Yamori, 2016;

Singh and Roy, 2017). This has led to calls for studying

plants, as they were, in natura (Shimizu et al., 2011;

Richards et al., 2012b; Kudoh, 2016).

Most controlled laboratory experiments have focused on

the plant response to a single environmental variable, while

plants in a natural environment are responding to multiple,

complex, dynamically changing environments. Results

from studies on plant responses to combinatorial stresses

reinforce the need for caution in comparing results from

laboratory and field-grown plants. Such studies have

shown that a plant’s transcriptional and metabolomic

response to combinations of (a)biotic stresses cannot be

predicted from the responses to individual stresses (Swin-

dell, 2006; Prasch and Sonnewald, 2013; Rasmussen et al.,

2013; Suzuki et al., 2014; Barah et al., 2016; Franks et al.,

2016; Gray et al., 2016). In particular, GWAS revealed dis-

tinct genetic architectures for single and combined stress

responses (Davila Olivas et al., 2017a,b; Thoen et al., 2017).

Furthermore, there is phenotypic plasticity for a plant’s

response to combinations of stresses (Weston et al., 2008;

Atkinson et al., 2013; Shaar-Moshe et al., 2018).

Just as many EEFG approaches have focused on

genetic mapping in field studies, the importance of gene

expression in the wild is being increasingly appreciated.

One example is work on Arabidopsis FLC by Aikawa

et al. (2010), who conducted a 2-year census of the tran-

script levels of this well-known temperature-dependent

flowering time gene to uncover the mechanisms by

which environmental factors regulate flowering (Figure 4).

This ground-breaking study has since been followed up

by others in which FLC transcript levels and chromatin

states were measured in different localities and field con-

ditions (Nishio et al., 2016; Hepworth et al., 2018), which

increasingly provided a clearer account of the complexity

and relevance of the environment for FLC-mediated

responses.

These studies on gene expression in the wild have been

expanded to field transcriptome studies. Transcriptome

data enrich these classical approaches as well as tradition-

ally employed genomic information for investigating

trends in plant ecological and evolutionary responses.

Specifically, measurements of genome-wide gene expres-

sion variation are helpful in describing the developmental

mechanisms that transform genomic information in speci-

fic loci to the realized phenotypic responses (Swanson-

Wagner et al., 2012; Ren et al., 2018). Furthermore,

regulatory variation is clearly abundant within and across

populations (Lasky et al., 2014; Lin et al., 2017). And

although its evolutionary significance is harder to ascertain,

several studies have uncovered heritable gene expression

variation among and within species to be the raw material

for evolutionary processes (Wang et al., 2005; Konishi et al.,

2006; Cong et al., 2008; Jiang and Rausher, 2018).

The potential of transcriptomic analysis in an EEFG

framework not only includes identification of functionally

relevant portions of the genome in ecological contexts, but

also to determine the behavior of phenotypically plastic

and adaptive traits in an evolutionary context. Integrating

population transcriptome studies in the EEFG framework,

we can identify two key insights that can be gained in char-

acterizing the evolutionary, regulatory, spatial and tempo-

ral landscapes of plant plasticity and adaptation. First,

population-level differences in gene expression can inform

us on how distinct environmental gradients shape trait

variation and evolution. Second, it can be instrumental to

predict species and population level adaptation to environ-

mental (both biotic and abiotic factors) change, and ulti-

mately facilitate the conservation and strategic utilization

of specific plant species.

In this regard, broad, high-resolution transcriptomic

measurements have been made for several plant species

not only in the laboratory but also out in the wild where

these plants grow. The levels and patterns of gene expres-

sion in the field – which have been referred to as the eco-

logical transcriptome (Alvarez et al., 2015) – have the

capacity to examine how plants behave when placed in the

fluctuating, multi-pronged environments that they face

throughout their life cycle. These ecological transcriptome

studies allow a connection between genotypic variation

into complex trait phenotypes as modulated by the prism

of the natural environment. Such studies have now

become increasingly popular, and have been undertaken

in A. thaliana (Richards et al., 2012b; Tyagi et al., 2016)

and crops (Plessis et al., 2015; Russell et al., 2016; Zhao

et al., 2018), tree species (Philippe et al., 2010; Verta et al.,

2013), lesser known plant species (Jia et al., 2017; Yang

et al., 2017), and energy crops like switchgrass (Palmer
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et al., 2017) and Miscanthus (Song et al., 2017; Yan et al.,

2017; Xing et al., 2018).

There has also been more work probing adaptation to

harsh and unconventional environments including ele-

vated mountain areas (Yang et al., 2015a; Jia et al., 2017),

inter-tidal mangrove areas (Yang et al., 2015b; Guo et al.,

2017), and even the Antarctic (Cho et al., 2018). In the case

of biotic interactions, field transcriptomes have been

sequenced from microbial plant colonizers and the plant

host in tandem in a dual RNA-seq approach (Hubbard

et al., 2015; Kamitani et al., 2016).

In this regard, the initial whole transcriptome study of

A. thaliana in the field is illustrative (Richards et al., 2012b).

In this study, two accessions of A. thaliana were grown in

the field in the Northeastern United States, and the leaf

transcriptome was measured throughout the plant’s life

cycle. The study was able to identify gene clusters that

showed differential patterns of gene expression across the

life cycle in the field (Figure 4). Moreover, principal compo-

nents of gene expression could be identified, and these

could be correlated with environmental features such as

temperature and precipitation. Levels of specific transcripts

were associated with each of these principal components,

and the function of these transcripts was consistent with

their possible environmental response (Figure 4; Richards

et al., 2012b).

Figure 4. The maturation of in natura gene expression studies in an evolutionary and ecological functional genomics (EEFG)-type framework, as illustrated by

representative studies.

Stylized and re-drawn key findings for (a) single transcript (FLC) expression in natura (Aikawa et al., 2010), (b) whole transcriptome changes throughout develop-

mental growth of Arabidopsis thaliana in the field (Richards et al., 2012b), and (c) constructed environmental gene regulatory influence networks from transcrip-

tome and chromatin accessibility data (Wilkins et al., 2016). These selected studies highlight the transition to a systems biology approach in an EEFG-type

framework.
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The development of systems biology has also provided

the opportunity to use transcriptome data, in conjunction

with other data types (Bonneau et al., 2006), to infer key

regulatory networks that display the genetic underpinnings

of plant responses to the environment. Such regulatory

networks include environmental gene regulatory influence

networks (EGRINs; Wilkins et al., 2016; Figure 4), as well as

other representations of gene regulatory modules reacting

to environmental signals (Nagano et al., 2012; Plessis

et al., 2015; Fournier-Level et al., 2016; Des Marais et al.,

2017; Miao et al., 2017).

While transcriptome studies have become a convention

for model species and crop plants in an EEFG context,

studies on wild plant species place more emphasis on the

basic mechanisms for survival and adaptation. The atten-

tion to different environments goes hand-in-hand with

increased interest in modeling evolutionary responses in

relation to climate change and environmental stress

(Nagano et al., 2012; Plessis et al., 2015; Fournier-Level

et al., 2016; Watson-Lazowski et al., 2016). Because tran-

scriptional reprogramming was the standard in examining

plant defense responses, in the EEFG framework, the tran-

scriptional implications of responses to biotic interactors

are more rigorously being considered at the systems level

in natural environments (Turner et al., 2013; Liao et al.,

2016; Nobori et al., 2018; Young et al., 2018).

Timing in these field transcriptome studies provides a

snapshot of the different dimensions of physiological

development and even evolution. Molecular mechanisms

governing the physiological responses vary across sea-

sons, time-points within a season and even within a given

day (Nagano et al., 2012; Plessis et al., 2015; Wilkins et al.,

2016). For example, differences in flowering time can

reflect on differences in photoperiod sensitivity or vernal-

ization requirements between genotypes (Des Marais et al.,

2012; Torres et al., 2013). This would act as a source of G

9 E interactive effects, and would cause different geno-

types to be at different developmental ages, especially

later in an experiment. As more field transcriptome studies

are undertaken, we can begin to understand plant

responses in the field across different seasons and at dif-

ferent time-scales.

OUTLOOK

The developing framework of evolutionary and ecological

functional genomics is allowing an integrated examination

of the roles of genetics and the environment in shaping

plant phenotypes. This can provide important insights into

the nature of adaptations and the evolution of plant spe-

cies, particularly in their natural ecological contexts. Of

great interest is the study of EEFG in crop species, particu-

larly as we attempt to meet the challenges of climate-ready

crops that can cope with future climate change and feed a

burgeoning world population.

This multi-disciplinary approach promises to provide a

more holistic approach to the study of plant function. As

we consider plant biology in the coming years, EEFG can

provide insights into at least two major scientific chal-

lenges that we need to tackle. One challenge in this area is

to understand how plants respond to complex, dynamic,

multi-factorial fluctuating environments that are the norm

in nature. While most laboratory studies in plants are

focused on examining one or two environmental inputs, in

nature plants face multiple changing environmental vari-

ables, and how the interplay of these signals with the plant

is integrated remains unknown. As we begin to study

plants out in nature, we can start to gain traction in learn-

ing about plant responses in more realistic contexts.

Another challenge is to enumerate the causal chain of

connections from gene to gene network to phenotype and,

ultimately, to fitness. This requires studying plants at mul-

tiple levels using different techniques – genome sequenc-

ing, molecular biology, network inference, plant

physiology, phenomics, and evolutionary and ecological

analyses. It is a daunting task, but one that must be under-

taken if we are to obtain a more complete picture of plant

biology.
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